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Abstract 

 
 

This paper studies different univariate forecasting models for consumer credit.  The time series in 

the study is composed of consumer credit from January 1993 through December 2002. The last 

eighteen observations of the series are withheld in each model in order to compare the fitted 

versus forecasted values. The study results show that the decomposition model outperformed all 

other competing models in forecasting. The resulting forecasting equation is: 

 

Y^t  = (862337.6 + 7991.38t) St 

 
where t is the time period and St is the seasonal index for that time period 

 

The decomposition model, however, was not the best model in fitting the series. Conversely, the 

best model in fitting the data (Winters) was not very useful in forecasting the series. 
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I. Introduction 
 

 
There is agreement in the economic literature that institutional factors such as financial 

innovations in the consumer credit industry contributed to the trend of exponential growth in 

consumer credit. However, some economists tend to argue that in addition to financial 

innovations, consumer credit growth may be due also to macroeconomic bias in recent years for 

balanced budget or even surpluses. These analysts argue that in a situation of austere budget 

stance, in order to achieve a modest rates of economic growth, consumers had to borrow on 

increasing scale (most recently, see: Wray, 2003 and Wray and Papadimitriou, 2003). Given the 

structural fiscal stance as well as the structural external negative balance, “moderate growth 

requires that the private sector run deficits” (Godley 1999; Godley and Izurieta, 2001; 

Papadimitriou et al, 2002). According to analyses published by The Levy Economics Institute 

(Godley 1999, 2003; Godley and Izurieta 2001; Godley and Wray 1999; Papadimitriou and Wray, 

2001) the expansion was highly “unsustainable and faced an almost inevitable crash”. According 

to these analysts the end of the consumer led growth had to come when households and firms 

tried to bring their spending back into line with their incomes. This would imply that in such a 

situation, there will be a slump in consumer credit too.1  

 

Can we use the historical data of the past years to accurately forecast future growth in consumer 

credit, or do we need to relate the consumer credit series to multiple independent variables? To 

answer this question we assume that growth of financial innovation is a continuous trend and thus 

we assert that it can be treated as an exogenous factor. Therefore, if it is the case that financial 

innovation are responsible for growth in consumer credit, the series can be accurately forecasted 

using univariate model. On the other hand, if univariate models are not promising, it can be 

asserted that, as suggested by the analysts above, there are grounds for exploring the impact of 

structural macroeconomic conditions for the level of consumer credit. 

 

This paper studies different univariate forecasting models for consumer credit.  The time series in 

the study is composed of consumer credit from January 1993 through December 20022. The data 

is seasonal (there are greater levels in consumer borrowing during Christmas holidays) and 

                                                 
1 At this time, household debt may be still at high level, since consumers will be responsible for 
principal and interest payments for borrowing in the previous periods. 
2 Beginning with the October, 2003 release (of August data), the monthly G.19 consumer credit 
statistics incorporate student loans extended by the federal government and by SLM Holding 
Corporation (SLM)—the parent company of Sallie Mae. With this addition, the historical data on 
consumer credit has been revised back to 1977, which shifts the level of consumer credit about 3 
percent on average between 1977:Q1 and 2003:Q2.  
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exhibits an exponential trend. The last 18 observations of the series are withheld in each model in 

order to compare the fitted versus forecasted values.  

 

II. Data Description 
 

The time series in the study is composed of consumer credit from January 1993 through 

December 2002. For this study we will look at seven different forecasting models, each presented 

as minicases 2 through 8. The model types included are naïve, simple seasonal, seasonal 

decomposition, Winter’s, two variations of first differences, and finally ARIMA.  For each minicase 

we will discuss the approach taken as well as the summary statistics for both the fit and the 

forecast. We will then review the forecasting performance of all models, look at their practical 

significance and finally draw a conclusion. Appendix A lists the raw data which is in the form of 

year, month, and consumer credit in millions of dollars. Figure I-A shows the plot of the raw 

consumer credit data, expressed in millions of dollars.  

Figure I-A 

 

 
 
As expected, the data is seasonal (there are greater levels in consumer borrowing during 

Christmas holidays) and exhibits an exponential trend. A review of the raw data revealed no 

obvious outliers. 

 

 

 

U.S. Consumer Credit, Jan 1993 - Dec 2002 (millions of dollars)
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III. Minicase 2 
 
 
 
In this minicase two models are utilized, a naïve model and a seasonal naïve model.   Data from 

July 1993 through June 2001 is used to fit the models, and the forecast is compared against July 

2001 to December 2002 data. 

 

The naïve model states that this month's consumer credit will be equal to last month. 

Yt = Yt-1 + e1t   

 

The graph in Figure II-A shows how the fitted model mirrors the actual data, lagging one month 

behind.  The last 12 months of the graph represent the forecast, which is assumes that the value 

of the last period will repeat in the future. 

 

Figure II-A 
 

The seasonal naïve model states that this month’s consumer credit will be equal to the consumer 

credit of one year ago.   

Yt = Yt -12 + e2t   
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The seasonal naive fit and forecast of the last withheld 18 months are shown in Figure II-B below.  

The fit reflects the small seasonal peaks, but due to the upward trend, the fitted value is 

consistently underestimated. The forecasted values are also under estimated, since the model 

assumes a seasonality that is within the range of the values of the previous 18 periods, while the 

actual values continue their growing trend. 

 
 

Figure II-B 

 
 
Analysis - Fit 

 

The mean error of the fitted naïve model is 8553.66.  We would want this number to be as close 

to zero as possible.  The mean error of the seasonal model is higher, 103027.27.  As we have 

seen from the graphs, the seasonal model consistently underestimates due to the substantial 

upward trend in the series.  Therefore the mean of this model does not benefit from the averaging 

of negative and positive errors, as does the naïve model. 
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The RSE for the naïve model is 13520 and 107968 for the seasonal.  The standard deviation has 

increased and the confidence intervals have broadened by using the seasonal model.  This 

suggests that selecting an appropriate lag period is less important than accounting for the upward 

trend.   

 

The MPE for the naïve model is 0.006% and 0.080% for seasonal.  It should be noticed that this 

statistic benefits from the naïve model’s mix of positive and negative errors as opposed to the 

seasonal model’s errors, which are all positive. The MAPE is 0.009% and 0.080%, very close for 

both models.   

 

Since we are aware of the intrinsic benefit the naïve model has in terms of mean error and mean 

percentage error, we will look primarily at RSE and MAPE to determine the best model fit.  Based 

on these two statistics, the naive model is the preferred fit. 

 

Analysis - Forecast 

 

The forecasted mean errors of the models are 43364 and 110176. Although the naïve model has 

only one known number to forecast off of – the next to last month of consumer credit, that model 

performs better on this statistic.  The seasonal model does not result in a better projection. 

 

The RSE for the forecasted naïve model is 64120 and 145619 for the seasonal.  As with the fitted 

models, using the seasonal model has broadened the prediction interval.  Again, the seasonal 

model is at a disadvantage when forecasting, so its forecasted RSE rose proportionally higher 

than the naive when compared against the fitted values. 

 

The forecasted MPE for the naïve model is 0.025% and 0.064% for the seasonal.   This figure is 

not much higher than fitted for the naïve.  However, the seasonal model decreased from the fitted 

MPE.  Finally, MAPE for the forecasts were the same as the MPE for each model.  Neither model 
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was able to fully accommodate the upward trend of the series, although the naive model showed 

better statistics. 

 

Implications 

 

Both models are not satisfactory. Employing the seasonal naive model shows that selecting an 

appropriate lag period is less important than accounting for the upward trend.  Over the range of 

a single year, the seasonal model gives a bigger prediction interval.  The seasonal model fared 

better in the conversion from fitted to forecasting. That model could be vastly improved if a good 

estimate of the trend is found. 

IV. Minicase 5 
 

 
In this minicase a model is developed using the time series decomposition method.  This model 

breaks the data down into three components: trend, cycle, seasonal, and error.   

 

The graph of actual values as shown in Figure I-A demonstrates a definitely upward trend and 

seasonality, with no apparent troughs and peaks. Therefore these series can be modeled with the 

equation: 

Yt  = TSe 

Where T = trend, S = seasonal influences, and e = error.   

 

The first step in decomposition is to identify the seasonal component by calculating the seasonal 

moving averages.  The unadjusted and final seasons indices derived are listed in Table III-A 

below. 

 

The final seasonal indices are the monthly indices.  Using them we calculate the deseasonalized 

values by dividing the actual consumer credit by the index.  Excel’s regression tool is then used to 

fit a line to the deseasonalized values to determine the trend line.  
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Table III-A  
Unadjusted and Final Seasonal Indices 

Month Average 

Final 
Seasonal 

Index 
1 1.022484 1.02224219
2 1.007871 1.00763245
3 0.996598 0.99636145
4 0.991963 0.99172786
5 0.992772 0.99253703
6 0.992381 0.99214583
7 0.994896 0.99466033
8 0.994053 0.99381744
9 1.000785 1.0005474

10 1.002121 1.00188366
11 1.001855 1.00161782
12 1.005065 1.00482653

Total: 12.00284 12
 

Figure III-A shows the actual and deseasonalized values along with the trend line. 

The resulting equation is: Trend = 862,337.6 + 7,991.38t, where t = time period. Both the 

intercept and the coefficient are statistically significant. 
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Figure III-A 
 
 
 
Analysis-Fit 
 

The series have now been decomposed into seasonal and trend components and we can fit data 

from 1993 to 2002 into the model.   

 

Figure III-B shows the fitted versus actual data.  The model captures the trend and seasonality in 

fitting. However, the fitted values tend periodically to be bellow or above the actuals. 

 
Figure III-B 
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This can be observed also by plotting the errors. Figure III-C, illustrates the variation of the fitted 

errors about zero, which show that the actual values are consistently under or above the fitted 

values of this model, as some of the errors are bellow and some above zero.  

 

Figure III-C 
 

 

Analysis – Forecast 

After fitting, the next step is to analyze forecasting using that model. The months of July 1993 

through December 2002 are forecasted and compared against actuals. Table III-A lists the actual, 

forecast and forecast error values for the last 18 observations of the series. 

Table III-A: Seasonal Decomposition Forecasts and Errors 
Obs# Actuals Forecast Errors 

98 1701855.59 1673923.71 27931.88 
99 1687002.91 1658052.609 28950.3 

100 1677718.42 1647468.574 30249.85 
101 1677195.83 1647732.27 29463.56 
102 1683644.44 1657008.439 26636 
103 1691993.07 1664283.965 27709.11 
104 1701250.5 1676450.646 24799.85 
105 1706654.59 1682971.987 23682.6 
106 1724225.03 1702364.535 21860.49 
107 1721954.5 1712644.539 9309.96 
108 1727410.97 1720194.424 7216.55 
109 1735540.27 1733735.07 1805.2 
110 1761967.92 1771953.301 -9985.38 
111 1724225.03 1754681.174 -30456.14 
112 1721954.5 1743016.289 -21061.79 
113 1727410.97 1742835.639 -15424.67 
114 1735540.27 1752189.405 -16649.13 
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Figure III-D charts the forecasted values for the last 18 months and actual for the decomposition 

model and Figure III-E illustrates the scatter of forecast errors about the mean of zero. The model 

tends to either under or overforecast. 

Figure 3D 

Decomposition, Actual vs. Forecasted
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Figure Figure III-E  

 

Overall, the forecast looks fairly good, however most of the forecasts before December 2001 are 

lower than the actual and after that forecasts are higher. Although the model picked the seasonal 

increase in consumer credit in December 2001, it failed to account for the smaller trend increase 

after January 2002. this is due to the inability of this model to account for cyclical factors, which 

were present during this period. The model assumed that the trend if increase will continue at the 

same rate, while there was a slump in consumer credit during this recessionary period, which was 

also marked with increased uncertainty. This indicates that the model does not pick up cyclical 

influences that most likely contributed to the slower growth of consumer credit during the 

recession.  

 

The summary statistics for the fit and forecast are listed in Table III-B.   The MPE, as well as the 

MAPE statistics are very close for fitted ( 0.019) and for forecast (0.011), as well to zero, which is 

encouraging.  The RSE for the forecasted has decreased from 25745.99 to 22579.24 indicating 

that the scatter of actual value about the forecasted values has decreased. 
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Table III-B : Decomposition Model 
 
 

 
 
Implications 

Our goal was to have a good estimate of the trend. We observed that there are not apparent 

peaks and troughs and thus did not expect that seasonality would be of much importance, 

however this model confirmed that even if we find a good account of the trend, there is need for 

incorporating cyclical elements in our forecast of consumer credit. 

 

This decomposition model is an improvement over the models used in minicase 2, with regards to 

all the forecasting statistics. With regards to fitting, the naive model scores better than 

decomposition in RSE and MAPE. The RSE in decomposition decreases from fit to forecast, as a 

contrast in the naive and seasonal naive models, where RSE increase from fit to forecast. In 

decomposition, RSE statistics has the lowest value in comparison to the models from minicase 2.  

 

Decomposition is better in forecasting consumer credit than naive and seasonal naive models, 

because there are clearly identified both trend and seasonality which characterize the series. 

Forecasts over longer horizons could deteriorate, due to business cycle impact on consumer 

credit, that is not picked up by the model.   

 
V. Minicase 6 

 
 
Another model that adjusts for seasonality and trend is Winters’ Three-Parameter Exponential 

Smoothing.  Winters’ differs from the simple decomposition we performed earlier in that it uses an 

exponentially weighted moving average to estimate the three factors representing the constant, 

the trend (slope) and the seasonality. 

Fitted Forecasted
n 96 n 18
ME -3.63048628 ME 9365.49
SSE 62971355480 SSE 8666979451
RSE 25745.99723 RSE 22579.24535
MAD 23083.9407 MAD 19762.94288
MPE -0.00052896 MPE 0.005582341
MAPE 0.019031512 MAPE 0.011591739
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The equation for the Winters’ model is: 

Yt+1 = (St + bt) It-L+1  + et+1 

Where St is the smoothed non-seasonal level of the series at the end of period t 

  bt is the smoothed trend in period t 

       It-L+1  is the smoothed seasonal index for period t + 1 and L is the length 

                      Of the seasonal cycle 

   et+1 is the error in period t + 1 

 

A critical step in using the Winters’ model is the initialization of the parameters St, bt and It.  These 

parameters can be estimated using simple decomposition, using the seasonal indices and trend 

line of the moving average.   

 

Two other estimating alternatives are the regression decomposition method and backforecasting.  

Backforecasting entails reversing the order of the data, with the most recent actuals being first 

and fitting a model to these observations. This model backforecasts Y0 and Y-1, which can be 

used as starting values of the original series. To obtain the starting values for the consumer credit 

model we take the mean of the first 12 observations, which is 890352.3, and is centered on 

month 6.5. The trend is estimated by taking the differences between the first five months of year 1 

and year 2 and dividing by the total observations in that period. The seasonal index It-L+1  is 

calculated by Yt/(St+bt)and is adjusted with each observation. The Excel feature ‘solver’ was used 

to optimize the values of the three smoothing parameters.   

Analysis – Fit 

The graph in Figure IV-A shows actuals versus fit, which looks very good.  The mean error is 

good at –83.58.  MAPE is excellent at 0.003%. Fig IV-A shows that the fitted values are reflecting 

both the trend and the seasonality of the actual. The Winters model is the best model so far in 

fitting (RSE = 5547). 
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Fig IV-A 

  

 
 
Analysis – Forecast 
 
Using this model the next eighteen months are forecasted (July 2001 through December 2002) 

and compared against actuals.  The actual and forecasting results are listed in Table IV-A. 

 

Table IV-A: Winters’ Forecast Value and Errors 
year actual Winters Forecasts errors 
2001-07 1701856 1710290 -8434.74
2001-08 1687003 1704480 -17477.2
2001-09 1677718 1697787 -20068.6
2001-10 1677196 1695475 -18279.3
2001-11 1683644 1703601 -19956.5
2001-12 1691993 1709679 -17685.6
2002-01 1701251 1721892 -20641.1
2002-02 1706655 1729009 -22354.6
2002-03 1724225 1747522 -23296.8
2002-04 1721955 1755050 -33095.7
2002-05 1727411 1771405 -43994.5
2002-06 1735540 1792243 -56702.6
2002-07 1761968 1832978 -71010.1
2002-08 1724225 1826024 -101799
2002-09 1721955 1818139 -96184.3
2002-10 1727411 1814957 -87546.2
2002-11 1735540 1822955 -87414.6
2002-12 1761968 1828763 -66795.2 
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The graph in Figure IV-B shows the last 18 months of the graph being the forecast versus actual 

values.  Winters tends to overforecast the actual values, but overall catches the trend and 

seasonality.  The distance between actual and forecasted increases with time. Even though 

Winters does better in fitting so far, it still remains inferior to the decomposition model in 

forecasting. 

 
Figure IV-B 

 
 
The statistics of the fit and forecast are listed in Table IV-B. The mean error of the forecast has 

worsened compared to the fit. The RSE for the forecast jumped up. MPE of the forecast improved 

over fitted to an excellent, close to zero MAPE of the forecast is still close to zero although a bit 

higher. 
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Table IV-B : Winters Summary Statistics 

 

 
Implications 
 
 
The statistics for Winters did not improve from decomposition for forecasting. For fitting, Winters’s 

MAPE is the best in comparison to all previous models. Thus Winters’ model is the best fitting 

model up to this point, but at a similar level with decomposition with respect to forecasting.  

Where the decomposition model tended to either underforecast or overforecast, the Winters 

model tends to overforecast, which one can assert, makes it more reliable. Therefore, it is 

expected that the analyst will find that this model will yield a better forecast for each month, after 

accounting for its tendency to overforecast. It could be useful to see if this overforecasting is valid 

also for previous periods, or is amplified by recessionary periods. 

 

VI. Minicase 7 
 
Minicase 7 uses an Excel spreadsheet to compare 18 different models.  These models use a 

combination of first differences and exponentially weighted averages.  Each model is a variation 

on the main model : 

Y ^t = Yt-1 + et    (where Y ^t is either the forecasted or the fitted value) 

Models 2 through 4 are exponentially weighted moving averages, with the smoothing constant set 

at .10, .40 and .80 respectively.  These formulas model no trend and no seasonality. 

 

Models 5 through 8 model no trend but seasonality.  Model 5 is the same as model 1 except it is 

seasonal.  Models 6 through 8 modify model 5 to be an exponentially weighted moving average, 

as we did in models 2 through 4. 

 

Fitted Forecasted
n 84 n 12
ME -83.58 ME -45152.06
SSE 2554273414 SSE 53963288940
RSE 5547.465952 RSE 70041.08466
MAD 4349.732781 MAD 45152.05716
MPE -8.523E-05 MPE -0.026152346
MAPE 0.003339005 MAPE 0.026152346
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Models 9 through 12 are designed to model trend but no seasonality.  They are the same as 

models 1 through 4 but with a variable added to account for trend – Et , which equals the mean 

error found in models 1 through 4 respectively. 

 

Models 13 through 16 make similar modifications to models 5 through 8, the variable Et is added 

to account for trend.   

 

Finally, models 17 and 18 include both first and seasonal differencing.  Their formulas are: 

Yt = Yt-12  + (Yt-1 - Yt-13 ) + et 

The first term in the equation accounts for seasonality.  The terms in parentheses are an estimate 

of the trend. 

 

Model 18 takes model 17 and adds in the mean differences found in that model in order to 

calculate second differences.  

 

Analysis – Fit 

 

For this study we will look at three statistics:  Sum of Standard Errors (SSE), Mean Standard 

Error (MSE) and Bayesian Information Criterion (BIC).  BIC is a statistic that weighs the residual 

standard error and model complexity.  The BIC statistic is often used by forecasters to help them 

choose among models where there is no other basis for selection.  Based on the principle of 

parsimony, a low BIC value indicates that the model is simple yet effective.  

 

In our spreadsheet we will be looking for the two models with the lowest BIC value.  Models 9 and 

12 have shown the best results of the 18 models.  Model 9 has a BIC of 1935.541 while model 12 

has a BIC of 1940.179.   

 

Models 9 to 12 are  Models 1 to 4 where mean errors have been added to the previous fitted 

values. When the mean errors are zero then the forecasts of models 1 to 4 will be identical to the 

forecasts of models 9 to 12.  
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  Y9^t = Y1^t  + E(e1t)     (9) 

 

  e9t = Y9t  - Y9^t  

 

   Y12^t = Y3^t + E(e4t)     (12) 

 

  e12t = Y12t  - Y12^t  

 

Table V-A shows the fit statistics of Model  9, which looks to be the best model according to the 

value of BIC. 

Table V-A: Statistics for Best Model 9 (Fitting) 

SSE 9642158745
MSE 114787604.1
BIC 1935.541
MIN/RSE -2.635
MAX/RSE 2.663
MSE/MIN(MSE) 1
 

Figure V-A shows the actual data, the fit and the forecast values of the last 18 months that have 

been withheld, as a result of applying model 9. 

 

Figure V-A 
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Table V-B shows the fit statistics of Model  12, which appears to be the second best model 

according to the value of BIC. Also, the SSE is much higher for model 12 in comparison to model 

9. 

Table V-B: Statistics for Second Best Model 12 (Fitting) 

SSE 10189507327.644
MSE 121303658.662
BIC 1940.179
MIN/RSE -2.202
MAX/RSE 2.70
MSE/MIN(MSE) 1.06
 

Figure V-B shows the fit and forecast of model 12 and the actual data. 

 

Figure V-B 
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Analysis – Forecast  
 
 
Table V-C shows comparison between the forecast statistics of the best Model  9 and the second 

best Model 12. 

 

Table V-C 

 
 
Graphic comparison between the forecasts of the last 12 months of Models 9 and 12 are shown 

in together in Figure V-C, and demonstrate that these models do not pick up seasonality and 

cycle and are pretty off with regard to trend. 

 
Figure V-C 

 

 
 

 
 

Forecast Model 9 Model 12
SUM ERR -678597.8082 -2377582
MEAN -37699.87823 -132087.9
STDDEV 27373.43613 92093.69
MIN ERROR -81130.38321 -270210.5
MAX ERROR 21713.67393 34643.42
TREND t-VALU -5.843147952 -6.085123
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Figure V-D shows the forecast errors of each model. The errors move together, which means that 

both models are quite similar in their forecasting. However, Model 9 has errors closer to zero in 

comparison to the forecast errors of model 12.  

 

Figure V-D 
 
 

 
Implications 
 

Although Model 9 and 12 rate the best with respect to BIC in fitting, they score poor in 

forecasting, due to the fact that they do not model trend and seasonality, as well as do not pick up 

cyclical changes. Hense these models should not be relied upon forecasting consumer credit 

series. Both models remain inferior to decomposition in forecasting and Winters in fitting. 

 
VII. Minicase 8 

 
Finally, we explore the Autoregressive Integrated Moving Average (ARIMA) models. The ARIMA 

model-building approach is based on two restrictions : a) the forecasts are linear functions of the 

sample observations ; and b) the aim is to find models that provide an adequate description of the 

characteristics of an observed time series with a few parameters as possible. With this last model 
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we will try to extract all possible information from the time series so that there is no pattern left in 

the residuals.  In other words, the errors will be distributed as white noise.   
 

First Model : ARIMA (0,0,0) 
 
First we run model ARIMA (0,0,0). As seen from the statistics in Table VI-A bellow, the Durbin-

Watson is not satisfactory, and the BIC is quite high. Both the R squared and the adjusted R 

squared are dismal. The graph shows that the most likely, the optimistic and pessimistic forecast 

are quite off. The ACFs  in Figure VI-B show a pattern of exponential decline, which suggest that 

we need to take an AR (1). This also suggests a nonstationary (non-constant) mean. The PACFs 

in Figure VI-C show a single high peak at lag 1. 

 

 
Table VI-A: Statistics for ARIMA (0,0,0) 
 
CONST   1249864.0599  
 
Within-Sample Statistics 
--------------------------------------------------------- 
Sample size 96                    Number of parameters 0 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 4.312e-010               Adjusted R-square 0.01042 
Durbin-Watson 0.003604           ** Ljung-Box(18)=896 P=1 
Forecast error 2.229e+005        BIC 2.229e+005 
MAPE 0.1543                       RMSE 2.229e+005 
MAD 1.824e+005                   
 
Figure VI-I: Fit and forecast of ARIMA (0,0,0) 
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Figure VI-B: ACFs of ARIMA (000) 
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Figure VI-C: PACFs for ARIMA (0,0,0) 
 

 
 
Second Model: ARIMA (1,0,0) 
 

Both ACFs and PACFs of the first model suggest an autoregressive model ARIMA (1,0,0). The 

statistics bellow show that there is great improvement in the Durbin Watson statistics and an 

improvement in BIC, even though it still remains quite high. Both the R squared and the adjusted 

R squared have improved dramatically. The coefficient [a1] is statistically significant. The Ljung-

Box (18) has decreased dramatically from 896 to 284 with a P value of 1. All these statistics 

suggest that we are moving in the right direction and that the AR (1) that we used is justified. Now 

we will try to improve the performance of the model by taking first differences. 

 
 
 
 
 
 
 
Table VI-B: Statistics for ARIMA (1,0,0) 
 
Term          Coefficient  Std. Error  t-Statistic  Significance 
------------------------------------------------------------------------------- 
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a[1]           0.9999       0.0000   20302.4636       1.0000 
_CONST        77.4087  
 
Within-Sample Statistics 
----------------------------------------------------------- 
Sample size 96                    Number of parameters 1 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 0.9964                   Adjusted R-square 0.9964 
Durbin-Watson 1.054               ** Ljung-Box(18)=284.3 P=1 
Forecast error 1.345e+004        BIC 1.37e+004 
MAPE 0.008907                     RMSE 1.338e+004 
MAD 1.09e+004                    
 
Figure VI-D: Fit and forecast of ARIMA (1,0,0) 
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Third Model: ARIMA (1,1,0) 
 
With ARIMA (1,1,0) the BIC improves a little bit, but still remains high. The Durbin-Watson is 

excellent, which means that we have solved the autocorrelation problem. But as the graph  shows 

forecasting does not improve. The value of the coefficient [a1] went down from 0.99 to 0.4724 but 

it still remains statistically significant. Both the R squared and the adjusted R squared remained 

high. All these statistics show that we are moving in the right direction in our search for the best 

model. 

 

 

As shown in Figure VI-E, the ACFs show high seasonal peaks at lag 12, 24, and 36. The PACFs 

as shown in Figure VI-F show a high peak at lag 12. This suggests a need to take seasonal 

differences. 
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Table VI-C: Statistics for ARIMA (1,1,0) 
 
Term          Coefficient  Std. Error  t-Statistic  Significance 
------------------------------------------------------------------------------- 
a[1]           0.4724       0.0930       5.0794       1.0000  
 
Within-Sample Statistics 
----------------------------------------------------------- 
Sample size 96                    Number of parameters 1 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 0.9972                   Adjusted R-square 0.9972 
Durbin-Watson 2.132               ** Ljung-Box(18)=113.9 P=1 
Forecast error 1.193e+004        BIC 1.215e+004 
MAPE 0.007131                     RMSE 1.187e+004 
MAD 8815                         
 
Figure VI-E:  Forecast of  Model ARIMA(1,1,0) 
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 Figure VI-F: ACFs for ARIMA (1,1,0) 
 

 
 
Figure VI-G: PACFs for ARIMA(1,1,0) 
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Fourth Model: ARIMA (1,1,0)*(0,1,0) 
 
After taking first and seasonal differences, the forecast becomes reasonable as shown on Figure 

VI-H. Our forecast error (or RSE) has now reached a reasonable level. The BIC value went down 

significantly, and the Durbin-Watson statistics approached a perfect level of 2.059. Both the R 

squared and the adjusted R squared remained quite good. The value of the a[1] coefficient went 

down from 0.4724 to 0.2318 but remained statistically significant nonetheless. The pessimistic 

forecast of the model is the closest to the actual. The seasonality is captured by the model. The 

pessimistic results of model tend to over-forecast arguably because of the impact of the recession 

whish in not captured in the model (the model assumes that the past will repeat itself). According 

the PACFs error PACFs shown in figure VI-G and VI-H, it appears that we need to take an MA(1). 

 
Table VI-D: Statistics for ARIMA (1,1,0)*(0,1,0) 
Term          Coefficient  Std. Error  t-Statistic  Significance 
------------------------------------------------------------------------------- 
a[1]           0.2318       0.1082       2.1436       0.9650  
 
Within-Sample Statistics 
---------------------------------------------------------------- 
Sample size 96                    Number of parameters 1 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 0.9995                   Adjusted R-square 0.9995 
Durbin-Watson 2.059               ** Ljung-Box(18)=43.61 P=0.9993 
Forecast error 5025               BIC 5119 
MAPE 0.00286                      RMSE 4999 
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MAD 3746                         
 
Figure VI-H: Fit and forecast of ARIMA (1,1,0)*(0,1,0) 
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Figure VI-I: ACFs for ARIMA (1,1,0)*(0,1,0) 

 
 
Figure VI-G: PACFs for ARIMA (1,1,0)*(0,1,0) 
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Figure VI-H: Error PACFs for ARIMA (1,1,0)*(0,1,0) 
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Fifth Model: ARIMA(1,1,1)*(0,1,0) 
 
It appears that by taking the moving average step, we have improved the BIC (from 5119 to 

5044) as well as the forecast error (from 5025 to 4861). Both the R squared and the adjusted R 

squared remained quite good. The Durbin-Watson statistics also remained quite good at a level 

of 2.077. 

 

The value of the coefficient a[1] went up but still remained less than one, and is still statistically 

significant. The value of the coefficient b[1] is also less than one and is statistically significant 

which justifies our use of the MA(1) procedure.          

 

The pessimistic forecast of this model is better than the previous one. The forecast is now much 

closer to the actual except for the effect of the recessions during which the forecast is a bit 

overestimating the level of consumer credit. 

 
 
Table VI-E: Statistics for Model ARIMA (1,1,1)*(0,1,0) 
 
Term          Coefficient  Std. Error  t-Statistic  Significance 
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------------------------------------------------------------------------------- 
a[1]           0.8678       0.1178       7.3697       1.0000 
b[1]           0.6794       0.1736       3.9131       0.9998  
 
Within-Sample Statistics 
---------------------------------------------------------------- 
Sample size 96                    Number of parameters 2 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 0.9995                   Adjusted R-square 0.9995 
Durbin-Watson 2.077               ** Ljung-Box(18)=41.58 P=0.9987 
Forecast error 4861               BIC 5044 
MAPE 0.002681                     RMSE 4810 
MAD 3522                         
 
Figure VI-I: Fit and forecast of ARIMA (1,1,1)*(0,1,0) 
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Sixth Model: ARIMA (1,1,1)*(0,1,1) 
 
The sixth model turns out to be the best model that the expert selection system in Forecast-pro 

also came up with. The BIC value is now the lowest (4374), and the forecast error decreased 

significantly from 4861 to 4138. Both the R squared and the adjusted R squared remained quite 

good. The Durbin-Watson statistics also remained quite good at a level of 1.913. 

 

The value of all the coefficients are less than one, and are still statistically significant, which 

justifies the additional step we have taken.    

        

From Figure VI-J, we can see that even the pessimistic forecast of this model also tends to over-

forecast the level of consumer credit, which could be explained by the fact that the model fails to 

take into account the cyclical effect in the economy. 

 



 36

The error PACFs still display a peak at lag 17, which is unexplainable so we chose to ignore it, 

Hence we conclude that have achieved white noise with the sixth model ARIMA (1,1,1)*(0,1,1). 

This model, however, does not outperform the decomposition model in forecasting, neither does it 

outperform Winters in fitting. 

 

Table VI-F: Statistics for ARIMA (1,1,1)*(0,1,1) 
 
Term          Coefficient  Std. Error  t-Statistic  Significance 
------------------------------------------------------------------------------- 
a[1]           0.9036       0.0815      11.0845       1.0000 
b[1]           0.6738       0.1471       4.5789       1.0000 
B[12]          0.7663       0.0589      13.0181       1.0000  
 
Within-Sample Statistics 
------------------------------------------------------------ 
Sample size 96                   Number of parameters 3 
Mean 1.25e+006                    Standard deviation 2.24e+005 
R-square 0.9997                  Adjusted R-square 0.9997 
Durbin-Watson 1.913               Ljung-Box(18)=21.2 P=0.7306 
Forecast error 4138               BIC 4374 
MAPE 0.002255                     RMSE 4073 
MAD 2954                         
 
Figure VI-J: Fit and forecast of ARIMA (1,1,1)*(0,1,1) 
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Figure VI-K: Error PACFs for ARIMA (1,1,1)*(0,1,1) 
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Estimation 

 
The equation for ARIMA (1,1,1)*(0,1,1) is the following: 
 
Yt = Yt-12 + (1 - φ1) (Yt-1 + Yt-13) - φ1(Yt-2 + Yt-14) + et - θ1e t-1  - θ12e t-12  + θ1θ12 e t-13   
 
Where θ1

 = b[1] = 0.6738        
θ12 = B[12] = 0.7663        
and φ1 is a[1] = 0.9036        
 
Yt = Yt-12 + 0.0964(Yt-1 + Yt-13) – 0.9036(Yt-2 + Yt-14) + et - 0.6738e t-1  - 0.7663e t-12  + 0.5163e t-13 
 
 
The coefficients of the error terms are less than one, which is a good thing in the sense that it 

minimizes the impact of the errors on the forecasted value. The model has an intuitive 

explanation: the forecasted value is equal to the value of 12 months ago plus some fraction of the 

difference between the value of last month and 12 months prior to last month, plus some negative 

fraction of the difference between the value of 2 months ago and 12 months prior to 2 months 

ago, plus the error terms. 

 

Table VI-H: Custom ARIMA summary table 
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ARIMA N Mean Std. Dev. Level 
Stationarity 

Variance 
Stationarity  

White 
noise 

(0,0,0)*(0,0,0) 96 1.25e+006 2.24e+005 No Yes No           
(1,0,0)*(0,0,0) 96 1.25e+006 2.24e+005 No Yes No 
(1,1,0)*(0,0,0) 96 1.25e+006 2.24e+005 No Yes No 
(1,1,0)*(0,1,0) 96 1.25e+006 2.24e+005 No Yes No 
(1,1,1)*(0,1,0) 96 1.25e+006 2.24e+005 No Yes No 
(1,1,1)*(0,1,1) 96 1.25e+006 2.24e+005 Yes Yes Yes 

 
 

VIII. Forecasting Performance 
  

Table VII-A: Master Summary Table 
 

Method 
Prob. 

Naive Season. 
Naive 

Decomp 
 

Winters ARIMA M 9    M 12 

n 95 84 96 84 96 96 96 
ME 8553 103027 -3.63 -83.58 19185510 20.61 175.62 
RSE 13,520 107,968 25,745 5,547 4,138 10,714 11,014 
MPE 0.006 0.080 -0.0005 -8.523E-05 0 -0.00008 8.42 
MAPE 0.009 0.080 -0.019 0.003 0.002255 0.006314 0.0064 
R2     0.9997   
DW     1.913   
Q-stat     21.2 P=0.73   
        
N 18 18 18 18 18 18 18 
ME 43,364 110,176 9,365 -45,152 18,422,337 -37,699 -51,307 
RSE 64,120 145,619 22,579 70,041 61,484 46,141 62,903 
MPE 0.025 0.064 0.0055 -0.026 3780377858 -0.0218 -0.02974 
MAPE 0.025 0.064 0.011 -0.026 3780377858 0.0232 -0.031456 
R2        
DW        
Q-stat        

 
 
 
We  learned that all statistics available must be considered when selecting a model, rather than 

just using one or two statistics.  Most of the models selected have at least one statistic that 

compares favorably to the other models’ or to the ideal value desired.  For example, the BICs of 

some models are good but they do not do as well in forecasting. 

 

As we worked through each model, the importance of adequately modeling the data seasonality 

and trend became more obvious.  With each model we refined the method of estimating these 

components and produce increasingly accurate fits and forecasts.  We found that both fit and 

forecast must be analyzed before selecting a model. This was particularly illustrated in the 

summary statistics of the Decomposition and ARIMA models. 
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Forecasts more than one year ahead may deteriorate if there is a significant cyclical change in 

the overall trend, either upward or downward.  It is speculated that the trend of consumer credit 

may change significantly in the next year due to pessimistic expectations of the banks and 

financial institutions. 

 
Table VII-B shows that the best model in fitting is Winters (lowest RSE of 4,138) but that same 

model does not perform well in forecasting. The best model in Forecasting turns out to be 

Decomposition (lowest RSE of 22,579). Strangely enough, decomposition was not a very good 

model in fitting (RSE = 25,745), which once again demonstrates that the best model in fitting is 

not necessarily the best model in forecasting especially when the forecasting period is subject to 

cyclical variations. 

 
IX. Conclusions and Practical Significance 

 

Even forecast-pro, one of the most powerful forecasting packages in the market failed to give an 

accurate or even close to accurate forecast of the consumer credit series. A less sophisticated 

method (decomposition) was able to forecast the series in a fairly good manner. That same 

method however, was not the best model in fitting the series. Conversely, the best model in fitting 

the data (Winters) was not very useful in forecasting the series. Hence, the best forecasting 

model is the following: 

 

Y^t  = (862337.6 + 7991.38t) St 

 

where t is the time period and St is the seasonal index for that time period 

 

We assumed that growth of financial innovations is a continuous trend, and could be thought as 

an exogenous factor. Therefore it is argued that if it is the case that financial innovations are 

responsible for growth in consumer credit, the series can be accurately forecasted using 

univariate model. On the other hand, we found that one needs to be cautious with the univariate 

models that we examined, since they do not account for cyclical changes which seem to be 

important for forecasting consumer credit.  Therefore, it could be concluded that we have further 

grounds in addition to economic theory to explore the impact of structural macroeconomic 

conditions for the level of consumer credit via employing multivariate forecasting models that 

would use some leading indicators to help us forecast the impact of the business cycle on 

consumer credit.  

 

Thus, we can conclude that with the suggested importance of cyclical influences in the consumer 

credit series,  one needs to be aware that using the historical data of the past years to accurately 
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forecast future growth in consumer credit is not likely to be successful. Now, we have a further 

reason to suggest that we need to relate the consumer credit series to multiple independent 

variables such as structural macroeconomic conditions, as argued by the Levy Institute 

economists cited above.  
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XI. Appendix 
 
Table XI-A: Raw Data 
 
Month Total US Consumer Credit, Millions of $ 

Jan-93 792084
Feb-93 787232
Mar-93 782635
Apr-93 788703

May-93 787824
Jun-93 793332
Jul-93 798412

Aug-93 807900
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Sep-93 816623
Oct-93 823101
Nov-93 833611
Dec-93 859011
Jan-94 852016
Feb-94 849501
Mar-94 855980
Apr-94 865740

May-94 876508
Jun-94 889523
Jul-94 895798

Aug-94 914850
Sep-94 929960
Oct-94 940507
Nov-94 954833
Dec-94 983933
Jan-95 980716
Feb-95 976109
Mar-95 986212
Apr-95 996675

May-95 1009335
Jun-95 1023803
Jul-95 1031361

Aug-95 1049005
Sep-95 1068387
Oct-95 1074531
Nov-95 1093705
Dec-95 1122828
Jan-96 1111605
Feb-96 1108966
Mar-96 1113174
Apr-96 1123195

May-96 1131855
Jun-96 1144476.58
Jul-96 1155221.48

Aug-96 1169174.93
Sep-96 1174791.52
Oct-96 1178475.53
Nov-96 1188736.84
Dec-96 1214096.33
Jan-97 1202548.65
Feb-97 1193843.9
Mar-97 1190153
Apr-97 1199755.11

May-97 1203940.94
Jun-97 1210047.7
Jul-97 1215047.54

Aug-97 1226571.74
Sep-97 1232925.94
Oct-97 1239194.74
Nov-97 1242179.38
Dec-97 1271622.75
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Jan-98 1251922.16
Feb-98 1242531.11
Mar-98 1244803.36
Apr-98 1256493.79

May-98 1258847.13
Jun-98 1272841.29
Jul-98 1278761.11

Aug-98 1293249.99
Sep-98 1303621.69
Oct-98 1311666.09
Nov-98 1318989.38
Dec-98 1346595.83
Jan-99 1339958.88
Feb-99 1334932.82
Mar-99 1335342.72
Apr-99 1338553.31

May-99 1348162.85
Jun-99 1357783.64
Jul-99 1367045.43

Aug-99 1384585.45
Sep-99 1387429.83
Oct-99 1394445.1
Nov-99 1409068.16
Dec-99 1446127.06
Jan-00 1439427
Feb-00 1434051.68
Mar-00 1437026.03
Apr-00 1444909.32

May-00 1456159.38
Jun-00 1476465.41
Jul-00 1487090

Aug-00 1510693.62
Sep-00 1519640.13
Oct-00 1538612.44
Nov-00 1558172.21
Dec-00 1593115.8
Jan-01 1586957.69
Feb-01 1585129.18
Mar-01 1584373.13
Apr-01 1596412.68

May-01 1601824.36
Jun-01 1608182.72
Jul-01 1612054.97

Aug-01 1626198.38
Sep-01 1629285.68
Oct-01 1643374.07
Nov-01 1671608.87
Dec-01 1701855.59
Jan-02 1687002.91
Feb-02 1677718.42
Mar-02 1677195.83
Apr-02 1683644.44



Todorova   43

May-02 1691993.07
Jun-02 1701250.5
Jul-02 1706654.59

Aug-02 1724225.03
Sep-02 1721954.5
Oct-02 1727410.97
Nov-02 1735540.27
Dec-02 1761967.92

 


